Quantcast
Channel: cimentación – Procedimientos de #construcción
Viewing all 12 articles
Browse latest View live

Reparación y refuerzo de cimentaciones en rehabilitación de edificios

$
0
0

Parece que la rehabilitación de edificios es uno de los pocos nichos de mercado en el sector de la construcción que es capaz de capear la crisis. Uno de los aspectos clave es la reparación y el refuerzo de las cimentaciones. Para profundizar en dicho tema, os dejo una presentación de Juan José Rosas que espero que os guste.

 


Control de ejecución en cimentaciones

$
0
0

Os paso un Polimedia de la profesora Esther Valiente relacionada con el control de calidad en la ejecución de las cimentaciones. Espero que os guste.

También lo tenéis en inglés:

Sistema “Fundex” de ejecución de pilotes de desplazamiento a rotación

$
0
0

El sistema “Fundex” de pilotes de desplazamiento por rotación requiere una cabeza de rotación en punta, que no se vuelve a recuperar.

En la figura se puede apreciar el método de ejecución, que consta de las siguientes fases:

  1. El hueco de perforación se cierra de forma estanca mediante una cabeza especial de perforación
  2. A través de una mesa de rotación se hace girar el taladro formado por la cabeza de perforación y el entubado
  3. Se coloca la armadura sobre la longitud del pilote
  4. Se hormigona hasta alcanzar la cota del terreno
  5. A través de la mesa de perforación, se retira el entubado, manteniendo un control constante del cuele del hormigón.

Os dejo el siguiente link de la empresa Martí Ibérica S.A. sobre el tema y un vídeo explicativo, que espero os guste.

Cimentación mediante cajones de aire comprimido

$
0
0
Disposición general de un cajón neumático (adaptado de Wilson y Sully, 1949)

Disposición general de un cajón neumático (adaptado de Wilson y Sully, 1949)

Un cajón es una estructura que hundida a través  del terreno o del agua permite colocar la cimentación a la profundidad de proyecto, y que posteriormente pasa a formar parte de la estructura definitiva. Estos cajones pueden ser de fondo abierto o de fondo cerrado (ver cajones flotantes). Nos centraremos en este post en los cajones de fondo abierto en las que existe una cámara de trabajo sometida a una presión superior a la atmosférica para impedir que el agua entre en la excavación. Se trata de las cimentaciones mediante cajones neumáticos o de aire comprimido.

Alguien puede preguntarse a qué viene un post sobre una técnica que tiene riesgos evidentes de ejecución y que ya en un artículo de Presa y Eraso (1970) nos avisaba que era una técnica en trance de desaparecer. Hoy día existen procedimientos (por ejemplo pilotes de gran diámetro) que son más sencillos de construir, suficientemente seguros, rápidos y económicos que permiten evitar riesgos innecesarios, especialmente los procesos de compresión y descompresión que requieren tiempos suficientes, tal y como ocurre en los trabajos realizados por los buzos o submarinistas. Pues bien, razones históricas y docentes nos llevan a analizar brevemente este procedimiento constructivo y a dejar unas cuantas referencias al lector curioso que quiera ampliar información al respecto.

En 1830 el británico Thomas Cochrane ideó y patentó un sistema para cimentar en seco, mientras que en Francia, de forma paralela, el ingeniero de minas francés Jacques Triger ideó en el año 1839 un sistema para poder excavar en el interior de la mina de Chalonnes  -que dirigía- en la zona cubierta por el agua del cercano río Loira. Mediante una cámara llena de aire a presión conseguía evitar la entrada del agua y así poder trabajar cómodamente. Habían inventado el cajón de aire comprimido.

Puente de Saltash (Isambar Brunel, 1854-1859)

El aire comprimido fue empleado por primera vez en cajones de puentes por John Wright en 1851 para los pilares de puente Rochester, y algunos años más tarde por Isambard Brunel en el puente Saltash. El primero que lo utilizó en cimentaciones de puentes muy grandes fue James B. Eads, en el puente St. Louis sobre el río Mississippi, comenzado en 1864. El capitán Eads conocía muy bien el Mississippi, por eso sabía que el lecho era muy socavable. En una ocasión había buceado con escafandra durante una de las crecidas del rió y pudo observar el movimiento de las arenas del fondo. Por eso no dudó en bajar las cimentaciones a gran profundidad por debajo del lecho del río. Los dos pilares situados en el río se hundieron por medio de aire comprimido hasta profundidades de 26 y 28 m bajo el nivel del agua, lo que constituyó un éxito notable ya que los efectos fisiológicos al trabajar bajo elevadas presiones de aire eran más o menos desconocidos por aquel tiempo. Los métodos de hundimiento ideados por Eads han variado hasta ahora únicamente en algunos detalles. Daniel E. Moran introdujo en 1936 un nuevo tipo de cajón conocido con el nombre de “cajón de flotación”, siendo empleado para el puente sobre la  bahía de San Francisco-Oakland.

Puente de St. Louis sobre el río Mississippi (James B. Eads, 1864-1874)

Puente de Brooklyn, Nueva York (John Augustus Roebling, 1867-1883)

En Estados Unidos el ejemplo más llamativo en el uso de cajones de aire comprimido es el puente de Brooklyn. Se trata de cajones de 52 por 31 m, en el lado de NuevaYork, que se dividieron en seis habitaciones donde trabajaban entre 15 y 20 personas en cada una de ellas –hasta 180 personas en su interior- y lo bajaron cerca de 24 metros bajo las aguas del Hudson. Hubieron grandes problemas y accidentes con las descompresiones, donde la mitad de los trabajadores sufrieron graves secuelas, y donde el propio Washington Roebling,  ingeniero jefe tras la muerte de su padre John A. Roebling, diseñador del puente, sufrió también las secuelas tras una visita de obra.

Cajones de aire comprimido para la cimentación del puente de Brooklyn

El procedimiento constructivo consiste en la hinca de un cajón con su borde inferior biselado o con forma de cuchilla que se va construyendo a medida que progresa la excavación del material que va quedando encerrado en su interior. Cuando se alcanza el lecho de roca, la cámara de trabajo se llena de hormigón y se convierte en la base permanente para la cimentación.  Su uso se limita a terrenos muy permeables o flojos debido al posible sifonamiento, cuando no sea posible el uso de un método alternativo. Antes de iniciar el proceso constructivo se hunde como un cajón abierto, tan profundo como sea posible. Mediante la inyección de aire comprimido se evita el desmoronamiento de las paredes.

El cajón de aire comprimido suele tener un cilindro de acceso para los trabajadores,  y otro cilindro independiente para los cangilones donde se coloca el material excavado. Hay unas compuertas herméticas que permiten mantener constante la presión de la campana durante la entrada y la salida de trabajadores y materiales. La presión debe equilibrarse en ambos lados de la compuerta para poder abrirla.

Mediante este método se pueden llegar a estratos de hasta 35 m de profundidad bajo el nivel del agua (pues los hombres on pueden trabajar a presiones de aire superiores a los 3,5 kg/cm2), no es necesario el agotamiento, es posible el acceso directo al fondo para vencer ciertos obstáculos durante el proceso de hinca y el fondo, una vez alcanzado, se puede observar y limpiar directamente, por lo que se garantiza unas condiciones buenas de cimentación. Sin embargo, entre los inconvenientes de este tipo de técnica destacan los siguientes: costes unitarios por material excavado altos y primas por peligrosidad a los trabajadores, pues se puede producir la muerte de los trabajadores por asfisia si hay una descompresión rápida de la cámara de trabajo. Ello obliga a duplicar las fuentes de energía para mantener la seguridad en la presión de aire.

Referencias:

Marsal, R.; Lloréns, M. (1980). Cimentaciones semiprofundas, en Jiménez-Salas, J.A. (Ed.) Geotecnia y Cimientos III: 212-251. Editorial Rueda, Madrid.

Presa, J.; Eraso, A. (1970). Las cimentaciones realizadas con cajones de aire comprimido. Una técnica en trance de desaparecer. Revista de Obras Públicas, 117(3064):855-862.

Tomlinson, M.J. (1982). Diseño y construcción de cimientos. Urmo, S.A. de Ediciones, Bilbao.

Willson, W.S.; Sully, F.W. (1949). Compressed-air caisson foundations. Inst. C.E. Works Comstruction Paper núm. 13.

Muros pantalla

$
0
0

Cuchara bivalva para construir pantallas.

Un muro pantalla o pantalla de hormigón in situ es un tipo de pantalla, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Según el Código Técnico de Edificación (CTE-DB-SE C), son elementos de contención de tierras que se  emplean para realizar excavaciones verticales en aquellos casos en los que el terreno, los edificios u otras estructuras cimentadas en las inmediaciones de la excavación, no serían estables sin sujeción, o bien, se trata de eliminar posibles filtraciones de agua a través de los taludes de la excavación y eliminar o  reducir a límites admisibles las posibles filtraciones a través del fondo de la misma, o de asegurar la estabilidad de éste frente a fenómenos de sifonamiento.

Las pantallas de hormigón armado moldeadas en el suelo nacen en los años 50 como solución para resolver los problemas que plantean las excavaciones profundas próximas a edificios y estructuras subterráneas o por debajo del nivel freático. Esta técnica de la ingeniería civil surge como una aplicación de la larga experiencia en la utilización de lodos tixotrópicos existente en el campo petrolero.

Es la tipología de cimentaciones más difundida en áreas urbanas para edificios con sótano en un predio entre medianeras, en parkings y a modo de barreras de contención de agua subterránea en túneles y carreteras. El proceso constructivo se puede dividir, de forma resumida, en las siguientes fases: construcción del murete guía, excavación de la zanja por bataches, colocación de la armadura, colocación de las juntas o encofrados laterales, hormigonado, construcción de la viga de coronación y excavación del recinto exterior. Detalles de este proceso lo podemos ver en los siguientes vídeos que os paso, que espero que os gusten.

Excavación del muro pantalla:

Uso del trépano cuando la cosa se pone fea:

Fresado de muros pantalla:

Izado y colocación de la armadura de un muro pantalla:

 

Pilotes CPI-7: perforado a rotación sin sostenimiento

$
0
0

Ejecución de pilotes CPI-7. www.tecnoiberica.es

Según la NTE, se denomina CPI-7 al pilote perforado a rotación y hormigonado “in situ”, en los que debido a las características del terreno, no precisa el sostenimiento de las paredes. Es un pilote rápido de ejecutar y económico, idóneo cuando el terreno es estable durante la perforación. Los diámetros habituales oscilan entre 450 y 1500 mm, con profundidades de hasta 40 m. El tipo de terreno decide la forma de excavación. En el caso de terrenos blandos y medios, la excavación se realiza mediante barrenas de hélice cortas. En cambio, con terrenos más duros deberíamos incluir en la barrena de dientes puntas de widia. En terrenos muy competentes y roca la perforación pasa por una corona circular con puntas de widia. Una vez alcanza la profundidad objetivo se realiza la limpieza del fondo de la excavación mediante el uso de un cazo (“bucket”).

Posteriormente al limpiado del fondo se procede a introducir la armadura de acero con la ayuda de un equipo auxiliar (grúa). Para garantizar el recubrimiento mínimo necesario de la misma, se levanta 20 cm sobre el fondo de la excavación y se colocan separadores para su correcto centrado.

Después de colocar la armadura se comienza con el hormigonado. Se utiliza un tubo “Tremie” para verter el hormigón en la perforación, de forma que se eviten segregaciones y exudaciones. Este tubo se introduce por dentro de la armadura hasta alcanzar el fondo de la perforación. A continuación se comienza a bombear el hormigón que debe ser homogéneo y de consistencia fluida, con conos de Abrams de 15-16 cm, recomendando dosificaciones de hormigón de 350 kg de cemento por m3 de hormigón y la utilización de áridos no superiores a 20 mm.

Conforme avanza la fase de hormigonado se va subiendo simultáneamente el tubo Tremie, pero teniendo la precaución de mantenerlo siempre unos dos metros introducido en el hormigón fresco. Cuando el hormigón alcanza la cota de la rasante del terreno se concluye con el hormigonado. Por último se procede al descabezado de los pilotes.

 

Pilote de extracción con fluidos estabilizadores

$
0
0

CPI-6Los pilotes perforados sin entubación con fluidos estabilizadores, denominados CPI-6 en la nomenclatura de las NTE-1977, permiten excavar en terrenos inestables o con nivel freático alto, debido a las propiedades expansivas y tixotrópicas de los fluidos empleados, que ayudan a contener las paredes. Estos fluidos presentan propiedades tixotrópicas en la bentonita y propiedades iónicas en los polímeros.

Los fluidos estabilizadores pueden ser utilizados para estabilizar la excavación en toda su altura o bien una parte. Durante la construcción del pilote el nivel de lodos debe mantenerse en un nivel apropiado, siempre por encima del nivel freático al menos de 1,0 a 1,5 m. Este procedimiento es aplicable de preferencia en terrenos finos sin estratos granulares gruesos libres de matriz fina o grandes bloques.

Una vez acabada la perforación, se introduce la armadura y se hormigona utilizando la tubería tremie hasta el fondo de la perforación. La tubería se va subiendo a medida que se hormigona, procurando que su boca inferior esté embebida un mínimo de 4 m dentro de la columna ya hormigonada para evitar posibles cortes durante el hormigonado. La consistencia del hormigón debe ser fluida. Durante el hormigonado deben controlarse nuevamente las características de los lodos de bentonita para evitar contaminaciones en el hormigón. Los diámetros utilizados en este tipo son, según la NTE, de 45 a 125 cm, aunque la maquinaria actual permite pilotes de diámetros mayores.

Se pueden alcanzar profundidades superiores a 50 m, en función de las características del Kelly telescópico que sostiene la herramienta de perforación. Sin embargo hay que tener en cuenta la complicación que supone el uso de lodos bentoníticos a medida que aumenta la profundidad.

Su uso es habitual como pilotaje trabajando por punta, apoyado en roca o capas duras de terreno. Cuando se atreviesen capas blandas que se mantengan sin desprendimientos por efecto de los lodos.

Fases de ejecución:

  1. Excavación con cuchara y vertido de lodo en la excavación para extracción de la tierra.
  2. Cambio de lodo contaminado y limpieza del fondo del pilote
  3. Introducción de las armaduras.
  4. Hormigonado desde el fondo mediante tubo Tremie y recuperación del lodo.
  5. Pilote terminado.

 

 

Fases CPI-6

Para garantizar la estabilidad de la perforación, el nivel del lodo debe estar siempre próximo al nivel de coronación del murete-guía, debiéndose mantener constante, por lo que es preciso aportar lodos a medida que se excava el terreno. Además, se precisa una central de tratamiento de lodos que permita el control de la calidad de los lodos (mediante su viscosidad y contenido en finos) y la regeneración de los lodos contaminados.

Imagen1

Para la perforación y extracción de tierras se utilizan cucharas, barrenas cortas o buckets. Los restos de la excavación se van depositando en el fondo de la misma, por lo que es fundamental la limpieza de la punta del pilote. Para su limpieza se utilizan bombas de fondo que permiten la extracción del lodo contaminado y la incorporación de lodo regenerado. Pueden emplearse para ello sistemas de circulación directa que introducen lodos frescos por la punta que desplazan al lodo contaminado, que sale por la cabeza, o sistemas de circulación inversa que lo hacen aspirando el fango contaminado del fondo y alimentan con fango fresco por la cabeza.

A continuación os dejo un vídeo explicativo de la construcción de este tipo de pilotes.

 

Cimentaciones para estructuras prefabricadas


¿Qué es un zapilote?

$
0
0
escanear0002

Pozo de cimentación acampanado (zapilote) o sin acampanar

Los pozos acampanados reciben el nombre de zapilote. Se trata de un pilote de gran diámetro excavado “in situ” y ensanchado en su base hasta tres veces su diámetro. Normalmente este tipo de cimiento es de hormigón en masa. Para conseguir el ensanchamiento de la base, se sustituye la hélice o cuchara que ha realizado la perforación por un ensanchador con brazos extensibles y dientes convenientemente dispuestos. Una vez se llega a la profundidad adecuada, los brazos se extienden y se realiza la ampliación hasta el diámetro previsto. Con este procedimiento se han llegado a perforaciones a 30 m de profundidad. Para que se pueda realizar el ensanchamiento de la base, el terreno debe ser algo cohesivo, lo cual se puede conseguir excepto si nos encontramos con arenas limpias.

Referencias:

García Valcarce, A. et al (2003). Manual de edificación. Mecánica de los terrenos y cimientos. Editorial CIE INVERSIONES EDITORIALES DOSSAT 2000., Universidad de Navarra.

Pilote “button-bottom”

$
0
0
Pilote entubado “button-bottom” (Western Foundation Corporation Viginia, USA)

Pilote entubado “button-bottom” (Western Foundation Corporation Viginia, USA)

Este tipo de pilote emplea un tubo metálico de unos 35 cm de diámetro que se hinca en el terreno hasta el rechazo. Presenta en el extremo del tubo una punta de hormigón prefabricado (button) de diámetro algo mayor que queda perdida. La forma y resistencia de esta punta permite atravesar estratos de gran resistencia. La chapa ondulada que ha de proteger al hormigón se hace descender por el interior del tubo hasta su unión con el fondo (bottom) y a continuación se hormigona mientras se extrae la entubación de hinca sin peligro gracias a la fijación de la chapa interior. Esta chapa corrugada en principio favorecería la resistencia por fuste del pilote, sin embargo, el hueco que se forma alrededor de la misma cuando se recupera el tubo de hinca no favorece el rozamiento, por lo que es mejor considerar que trabaja por punta. Su longitud alcanza unos 20 – 30 m, soportando cargas de unos 500 kN o mayores. Este tipo de pilote es patente de Western.

Cimentación de la cimbra de un paso superior ejecutado “in situ”

$
0
0
ama011

Detalle de las torres sobre los durmientes de madera y de la zahorra compactada

Una cimbra no deja de ser una estructura que debe estar perfectamente apoyada sobre un terreno con suficiente capacidad portante que, además, minimice sus asientos diferenciales. Normalmente se suele exigir un mínimo de 0,10 MPa de tensión admisible al terreno que sirve de apoyo a una cimbra tubular. Para ello se compacta el suelo y se le suele mejorar con unos 30 cm de un material granular (grava-cemento o zahorras), para facilitar el drenaje en caso de lluvias. También se deben colocar durmientes de madera paralelos a la directriz del tablero para apoyar los pies de las torres. Este elemento sirve para repartir las cargas y reducir la tensión transmitida.

ama017

Cimentación provisional para soportar las torres de una cimbra diáfana

En el caso de terrenos flojos o cuando las cargas son elevadas, se puede sustituir el terreno o, incluso, hay que recurrir a cimentaciones auxiliares. La cimbra también se debe estabilizar también en la proximidad de los terraplenes laterales, próximos a los estribos. Para ello se escalona el terreno, ejecutando unos pequeños muros de hormigón para reforzar la seguridad de los apoyos.

ama009

Escalonamiento con pequeños muros de hormigón junto al estribo

Un aspecto importante es la disposición de cimbras sobre ríos o torrenteras. Una lluvia torrencial imprevista puede originar arrastres y avenidas que pueden erosionar el apoyo de las cimbras, ocasionando su desplome. Este incidente es especialmente grave cuando se ha vertido el hormigón y no se ha alcanzado la resistencia suficiente para pretensar el tablero de forma que soporte su propio peso. Para prevenir esta circunstancia una buena práctica consiste en cimentar la cimbra sobre una losa de hormigón protegida lateralmente mediante escollera. Otra buena práctica consiste en prever alguna zanja aguas arriba para dar salida al agua con una zanja lateral que atraviese la planta del tablero y vierta aguas abajo.

Sistema “Fundex” de ejecución de pilotes de desplazamiento a rotación

$
0
0

El sistema “Fundex” de pilotes de desplazamiento por rotación requiere una cabeza de rotación en punta, que no se vuelve a recuperar.

En la figura se puede apreciar el método de ejecución, que consta de las siguientes fases:

  1. El hueco de perforación se cierra de forma estanca mediante una cabeza especial de perforación
  2. A través de una mesa de rotación se hace girar el taladro formado por la cabeza de perforación y el entubado
  3. Se coloca la armadura sobre la longitud del pilote
  4. Se hormigona hasta alcanzar la cota del terreno
  5. A través de la mesa de perforación, se retira el entubado, manteniendo un control constante del cuele del hormigón.

Os dejo el siguiente link de la empresa Martí Ibérica S.A. sobre el tema y un vídeo explicativo, que espero os guste.

Viewing all 12 articles
Browse latest View live